K-bit cipher feedback mode - ترجمة إلى الروسية
Diclib.com
قاموس ChatGPT
أدخل كلمة أو عبارة بأي لغة 👆
اللغة:     

ترجمة وتحليل الكلمات عن طريق الذكاء الاصطناعي ChatGPT

في هذه الصفحة يمكنك الحصول على تحليل مفصل لكلمة أو عبارة باستخدام أفضل تقنيات الذكاء الاصطناعي المتوفرة اليوم:

  • كيف يتم استخدام الكلمة في اللغة
  • تردد الكلمة
  • ما إذا كانت الكلمة تستخدم في كثير من الأحيان في اللغة المنطوقة أو المكتوبة
  • خيارات الترجمة إلى الروسية أو الإسبانية، على التوالي
  • أمثلة على استخدام الكلمة (عدة عبارات مع الترجمة)
  • أصل الكلمة

K-bit cipher feedback mode - ترجمة إلى الروسية

ALGORITHM THAT USES A BLOCK CIPHER TO PROVIDE AN INFORMATION SERVICE SUCH AS CONFIDENTIALITY OR AUTHENTICITY
Electronic codebook; Cipher-block chaining; Cipher feedback; Output feedback; Cipher Block Chaining; Counter mode; Modes of operation; CTR mode; Output feedback mode; Cipher block chaining; Block ciphers mode of operation; Electronic code book; CBC mode of operation; Block cipher modes; Block cipher mode; Cipher mode; Cipher modes; Enciphering scheme; Ciphertext feedback mode; Encryption mode; Mode of operation; ECB mode; OFB mode; Block cipher modes of operation; Mode of operation\; Block cypher mode; CBC mode; CFB mode; Cipher feedback mode; Electronic Codebook; AES-CBC; AES-CTR
  • Cipher block chaining (CBC) mode decryption
  • Cipher block chaining (CBC) mode encryption
  • CBC example with a toy 2-bit cipher
  • GCM encryption operation
  • Propagating cipher block chaining (PCBC) mode decryption
  • Propagating cipher block chaining (PCBC) mode encryption
  • CBC example with a toy 2-bit cipher

K-bit cipher feedback mode      
режим шифрования с обратной связью от К битов шифротекста
CFB mode         
(cipher feedback mode) режим обратной связи от шифротекста (в алгоритме DES)
cipher block chaining         
сцепление блоков шифротекста (при блочном шифровании)

تعريف

К-мезоны

каоны, группа нестабильных элементарных частиц, в которую входят две заряженные (К+, К-) и две нейтральные (К0, ) частицы с нулевым Спином и массой приблизительно в 970 раз большей, чем масса электрона. К.-м. участвуют в сильных взаимодействиях (См. Сильные взаимодействия), т. е. являются адронами; они не имеют барионного заряда (См. Барионный заряд) и обладают отличным от нуля значением квантового числа странности (См. Странность) (S), характеризующей их поведение в процессах, обусловленных сильным взаимодействием: у К+ и К° S=+1, а у К- и (являющихся античастицами (См. Античастицы) К+, К°) S = -1. Совместно с гиперонами (См. Гипероны) К.-м. образуют группу так называемых странных частиц (частиц, для которых S ≠ 0).

К+ и К° одинаковым образом участвуют в сильных взаимодействиях, имеют приблизительно одинаковые массы и различаются лишь электрическим зарядом. Они могут быть объединены в одну группу - так называемый изотопический дублет (см. Изотопическая инвариантность) и рассматриваются как различные зарядовые состояния одной и той же частицы с изотопическим спином (См. Изотопический спин) I = 1/2. Аналогичную группу составляют и . Из-за различия в странности нейтральные К-м. К° и являются разными частицами, различным образом участвующими в сильных взаимодействиях.

Согласно современной классификации элементарных частиц, К-м. (К+, К°, , ) вместе с π-мезонами (π+, π0, π-) и η0-мезоном входят в одну группу (октет) частиц, приблизительно одинаково участвующих в сильных взаимодействиях.

Открытие К-мезонов связано с работами большого числа учёных в различных странах. В 1947-51 в космических лучах (См. Космические лучи) было открыто несколько частиц, массы которых, измеренные с доступной в то время точностью, были приблизительно одинаковыми, а способы распада - разными.

Табл. 1.- Основные характеристики и способы распада К-мезонов

--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------

| Частица | Масса m (Мэв) | Странность S | Время жизни τ: | Способы | Вероятность |

| | | | (сек) | распада | распада \%) |

|-------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|

| К+ | 494 | +1 | 1,2-10-8 | μ±+ν | 64 |

| К- | | -1 | | π±+ π0 | 21 |

| | | | | π±+ π-+ π+ | 5,57 |

| | | | | π±00 | 1,70 |

| | | | | μ±0+ν | 3,18 |

| | | | | e±0+ν | 4,85 |

| | | | | e±+ν | 1,2-10-5 |

|-------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|

| К0 | 498 | +1 | | Распады на К-мезоны50\% по схеме K0S и на |

| | | -1 | | К-мезоны50\% по схеме и на K0L (см. табл. |

| | | | | 2). |

--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------

Табл. 2.- Основные способы распада K0S и K0L

------------------------------------------------------------------------------------------------------------------------------------------------------------------------------

| Частица | Масса м | Время жизни τ (сек) | Способы распада | Вероятность |

| | | | | распада \%) |

|-----------------------------------------------------------------------------------------------------------------------------------------------------------------------------|

| K0S | ≈mK0 | 0,86-10-10 | π++ π- | 68,7 |

| | | | π00 | 31,3 |

|-----------------------------------------------------------------------------------------------------------------------------------------------------------------------------|

| K0L | ≈mK0 | 5,4-10-8 | π000 | 21,5 |

| | Разность масс: | | π+-0 | 12,6 |

| | m KL - m Ks 3-10-6 | | π±±+ν | 26,8 |

| | эв | | π±+e±+ν | 38,8 |

| | | | π++ π- | 0,16 |

| | | | π00 | 0,12 |

| | | | γ+ γ | 5-10-4 |

------------------------------------------------------------------------------------------------------------------------------------------------------------------------------

Это были так называемые θ-мезоны, распадающиеся на два пи-мезона (См. Пи-мезоны), τ-мезоны, распадающиеся на три π-мезона, и др. Значит. прогресс в изучении этих частиц начался с 1954, когда их удалось получать с помощью ускорителей заряженных частиц (См. Ускорители заряженных частиц). Тщательные измерения масс и времён жизни показали, что во всех этих случаях наблюдались различные способы распада одних и тех же частиц, названных К-м.

Открытие К-м. сыграло важную роль в физике элементарных частиц; оно помогло установить новую характеристику сильно взаимодействующих частиц (адронов) - странность и создать современную систематику адронов (см. Элементарные частицы). Изучение распадов К-м. дало первые сведения о несохранении в слабых взаимодействиях (См. Слабые взаимодействия) пространственной и зарядовой чётности, а также о нарушении комбинированной чётности (см. Чётность, Зарядовое сопряжение, Комбинированная инверсия).

Сильные взаимодействия К-мезонов. Наличие у К-м. отличной от нуля странности S накладывает (из-за сохранения S в сильных взаимодействиях) характерный отпечаток на процессы сильных взаимодействий с участием К-м. Так, К+ и К0, имеющие S = +1, рождаются при столкновениях "нестранных" частиц - π-мезонов и нуклонов (протонов и нейтронов) - только совместно с гиперонами или , , имеющими отрицательное значение странности (см., например, в ст. Гипероны).

Поскольку все гипероны имеют отрицательную странность, они легче рождаются в процессах, вызванных К- и , чем в процессах, вызванных К+ и К0. Например, возможна реакция + р → Λ0 + π+, тогда как реакция К0 + р → Λ0 + π + запрещена законом сохранения странности в сильных взаимодействиях (здесь р - протон, Λ0 - гиперон). Рождение гиперонов в пучках К+, К0 менее вероятно, т.к. оно требует появления совместно с гипероном нескольких дополнительных К+ или К0.

Поэтому медленные К+, К0 слабее взаимодействуют с веществом, чем , .

Слабые взаимодействия К-мезонов. Распады К-м. обусловлены слабым взаимодействием и происходят с изменением странности на 1 (в слабых взаимодействиях странность не сохраняется). Распады могут осуществляться различными способами и подчиняются эмпирическим правилам, определяющим изменение странности, изотопического спина адронов и пр. (см. Отбора правила). В распадах К-м. не сохраняются пространственная и зарядовая чётности, что проявляется, например., в возможности распада как на 2 π-, так и на 3 π-мезона.

Рисунок иллюстрирует процессы сильного и слабого взаимодействия К-м.

Специфические свойства нейтральных К-мезонов. Выше отмечалось, что К0- и -мезоны, отличаясь друг от друга значениями квантового числа странности, участвуют в процессах сильного взаимодействия как две различные частицы. Поскольку, однако, в процессах слабого взаимодействия, в частности в распадах К.-м., странность не сохраняется, оказываются возможными взаимные превращения K0. Наличие таких переходов между частицей и античастицей, имеющими разные значения одного из квантовых чисел, характеризующих элементарные частицы, обусловливает специфические, уникальные свойства нейтральных К.-м. Для любых других частиц существование подобных переходов запрещено строгими законами сохранения электрического или барионного заряда (а также, по-видимому, и лептонного заряда (См. Лептонный заряд) для переходов нейтрино - антинейтрино).

В вакууме благодаря переходам K0 состояниями, имеющими определённую энергию и время жизни, будут не К0 и , а две квантово-механических суперпозиции этих состояний. Эти суперпозиции соответствуют частицам с различными массами и различными временами жизни: долгоживущему K0L- и короткоживущему K0S-meзонам. Разность масс K0S и K0L обусловлена слабым взаимодействием, вызывающим переходы K0, и весьма мала. Время жизни и способы распада K0S и K0L указаны в.

Таким образом, в то время как в процессах, вызываемых сильным взаимодействием, проявляются состояния К0 и , обладающие определёнными значениями странности (сохраняющейся в сильном взаимодействии), в процессах слабого взаимодействия (в распадах) проявляются как частицы состояния K0L и K0S. Состояния K0L и K0S близки к суперпозициям состояний, которые называют K01 и K02:

K0s ≈ K01 = ,

K0L ≈ K02 = ,

т. е. K0L и K0S приблизительно на 50\% "состоят" из К0 и на 50\% - из . Аналогичным образом можно утверждать, что К0 и приблизительно на 50\% "состоят" из K0S и на 50\% - из K0L тот факт, что состояния К0 и представляют суперпозицию двух состояний K0L и K0S разными массами и временами жизни, приводит к появлению своеобразных осцилляций ("биений"): К0, возникая в результате сильного взаимодействия, на некотором расстоянии от точки рождения частично превращается за счёт слабого взаимодействия в и потому оказывается способным вызывать ядерные реакции, характерные для и запрещенные для К0, например реакцию + р → Λ0 + π + (эффект Пайса - Пиччони). Др. своеобразное явление - так называемая регенерация короткоживущих K0S-meзонов при прохождении через вещество долгоживущих K0L-meзонов: на достаточно больших расстояниях от места образования пучка К0 (или ) пучок состоит практически только из долгоживущих K0L, т.к. короткоживущие K0S распадаются раньше. Поэтому на таких расстояниях наблюдаются лишь распады, характерные для K0L (). Казалось бы, K0S не могут вновь появиться в пучке. Однако если пучок K0L пропустить через слой вещества, то из-за различия во взаимодействиях с веществом К0 и , составляющих K0L, изменяется относительный состав пучка и в пучке K0L появляется добавка K0S с характерными для K0S распадами.

Комбинации K01 и К02 обладают определённой симметрией относительно операции комбинированной инверсии (СР): при переходе от частиц к античастицам (операция зарядового сопряжения С) с одновременным пространственным отражением (операция Р) волновая функция, соответствующая состоянию K01, остаётся неизменной, а волновая функция К02 меняет знак. Поэтому состояние K01 может распадаться на 2π (систему, обладающую теми же свойствами относительно операции СР, что и K01), a K02 не может. Поскольку вероятность распада на 2π значительно превышает вероятности др. способов (каналов) распада, большое различие во временах жизни долго- и короткоживущих К-м. считалось указанием на существование в природе симметрии относительно операции комбинированной инверсии, а состояния K0L и K0S отождествлялись с K01 и К02. Однако в 1964 было установлено, что долгоживущий К-м. с вероятностью приблизительно 0,2\% распадается на 2π. Это свидетельствует о нарушении СР-симметрии и об отличии состояний K0L и K0S от K01 и К02. Природа сил, нарушающих СР-симметрию, ещё не выяснена. Имеющиеся эксперимент. данные не противоречат возможности существования в природе особого "сверхслабого" взаимодействия, нарушающего симметрию СР и проявляющегося в распадах нейтральных К-м.

Лит.: Марков М. А., Гипероны и К-мезоны, М., 1958; Далиц P., Странные частицы и сильные взаимодействия, пер. с англ., М., 1964; Окунь Л. Б., Слабое взаимодействие элементарных частиц, М., 1963; Ли Ц. и By Ц., Слабые взаимодействия пер. с англ., М., 1968; Газиорович С., Физика элементарных частиц, пер. с англ. М., 1969; Эдер Р. К., Фаулер Э. К., Странные частицы, пер. с англ., М., 1966.

С. С. Герштейн.

Схематическое изображение фотографии, полученной в водородной пузырьковой камере, иллюстрирующее процессы сильного и слабого взаимодействий К-мезонов. В точке 1 за счёт сильного взаимодействия происходит реакция К-+p→Ω-+0, в которой сохраняется странность. Распады образовавшихся частиц происходят в результате слабого взаимодействия с изменением странности на 1: К0→π+- (в точке 2); Ω-→Λ0- (в точке 3); Λ0→p+π- (в точке 4); К-→π+-- (в точке 5). Треки частиц искривлены, так как камера находится в магнитном поле. Пунктиром обозначены треки нейтральных частиц, не оставляющие следа в камере.

ويكيبيديا

Block cipher mode of operation

In cryptography, a block cipher mode of operation is an algorithm that uses a block cipher to provide information security such as confidentiality or authenticity. A block cipher by itself is only suitable for the secure cryptographic transformation (encryption or decryption) of one fixed-length group of bits called a block. A mode of operation describes how to repeatedly apply a cipher's single-block operation to securely transform amounts of data larger than a block.

Most modes require a unique binary sequence, often called an initialization vector (IV), for each encryption operation. The IV has to be non-repeating and, for some modes, random as well. The initialization vector is used to ensure distinct ciphertexts are produced even when the same plaintext is encrypted multiple times independently with the same key. Block ciphers may be capable of operating on more than one block size, but during transformation the block size is always fixed. Block cipher modes operate on whole blocks and require that the last part of the data be padded to a full block if it is smaller than the current block size. There are, however, modes that do not require padding because they effectively use a block cipher as a stream cipher.

Historically, encryption modes have been studied extensively in regard to their error propagation properties under various scenarios of data modification. Later development regarded integrity protection as an entirely separate cryptographic goal. Some modern modes of operation combine confidentiality and authenticity in an efficient way, and are known as authenticated encryption modes.

What is the الروسية for K-bit cipher feedback mode? Translation of &#39K-bit cipher feedback mode&#3